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Abstract. This short manuscript is made for the mini-course in the RIMS workshop「非コ
ンパクト空間上のシュレディンガー作用素の半古典解析とスペクトル理論」held in RIMS, Kyoto
University, on September 3,4 and 5, 2025.

When a semiclassical differential operator is matrix-valued, at least two interesting prob-
lems arise. First, the eigenvalues of the principal symbol (assumed Hermitian) may have sin-
gularities as functions in the phase space at crossing points where their multiplicity changes.
Second, even if the the principal symbol is regularly diagonalized, the so-called non-adiabatic
transition occurs as was first suggested by Landau and Zener for a simple model. This model
implies that if two classical trajectories cross transversally at a point, the transition proba-
bility from one to the other is of order h1/2, where h is the semiclassical parameter.

In this mini-course, we focus on this seconde problem, and study a model of a 1D 2 × 2
matrix Schrödinger operator (1.1), where the principal part is diagonal with two Schrödinger
operators. The goal is to understand that the transition, which we express by the off-diagonal

entries of the microlocal scattering matrix, is of order h
1

m+1 when the contact order of the
crossing is m. We apply this microlocal result to the semiclassical asymptotic distribution
of eigenvalues and resonances.
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1. Introduction and survey

In this minicourse, we mainly consider the matrix Schrödinger operator in dimension 1:

(1.1) P =

(
P1 hW
hW P2

)
,

where each Pj (j = 1, 2) is a scalar Schrödinger operator

Pj = −h2
d2

dx2
+ Vj(x),

with a real-valued smooth potential Vj(x), and W is a multiplication operator by a real-valued
smooth functionW (x). The constant h is regarded as a positive small parameter (semiclassical
parameter). Such a matrix-valued operator P appears in the quantum chemistry as the Born-
Oppenheimer approximation (see [24]), where the semiclassical parameter corresponds to the
square root of the ratio of the mass of the nuclear and the electron.

Let pj(x, ξ) be the classical Hamiltonian corresponding to the Schrödinger operator Pj ;

pj(x, ξ) = ξ2 + Vj(x),

and Hpj the Hamiltotnian vector field;

Hpj :=
∂pj
∂ξ

∂

∂x
− ∂pj

∂x

∂

∂ξ
= 2ξ

∂

∂x
− V ′

j (x)
∂

∂ξ
.

The value pj(x, ξ) is invariant along the integral curve exp tHpj (x0, ξ0) (energy conservation).

1.1. Basic facts for the scalar Schrödinger operators. Let us review some basic facts

for the scalar Schrödinger operator P = −h2 d2

dx2 + V (x). We denote p(x, ξ) = ξ2 + V (x).
We consider the following conditions on the potential V (x) and the energy level E0 ∈ R near
which we study the eigenvalues and resonances.

Condition 1. The function V (x) is real-valued on R and analytic in an angular complex
neighborhood of R

S := {x ∈ C; |Imx| < (tan θ0)(1 + |Rex|)}
for some positive constant θ0 < π/2. Moreover, V (x) have limits different from E0 as Rex →
±∞ in this domain;

(1.2) V (x) → V ± 6= E0 as Rex → ±∞ in S .

Condition 2±. There exists c0 ∈ R such that

±V (x)− E0

x− c0
> 0 ∀x ∈ R.

Condition 3. There exist a0 < b0 such that

V (x)− E0

(x− a0)(x− b0)
> 0 ∀x ∈ R.

Under the condition 2±, the energy surface (or characteristic set)

Γ(E) = {(x, ξ); p(x, ξ) = E}
is an unbounded curve for E close enough to E0. The classical trajectory for p starting from
a point in Γ(E) goes to infinity as t tends to plus and minus infinity under the condition 1.
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The spectrum of the scalar operator P is continuous near E0. Moreover, it is known that
there is no resonance in a small complex neighborhood of E0.

Fact 1. ([30]) Suppose that E0 ∈ R is a non-trapping energy, i.e.

| exp tHp(x0, ξ0)| → ∞ as t → ±∞ for any (x0, ξ0) ∈ Γ(E) = p−1(E).

Then there is no resonance in any complex neighborhood of size O(h| log h|) of E0.

Under the condition 3, on the other hand, Γ(E) is a simple closed curve for E close enough
to E0. The classical trajectory for p starting from a point in Γ(E) is periodic along Γ(E).
The spectrum of P near E0 consists of (simple) eigenvalues. Let A(E) be the action of the
classical Hamiltonian p(x, ξ) defined as line integral of the one form ξdx along this curve:

A(E) :=

∫
Γ(E)

ξdx,

which is the volume of the domain bounded by the closed curve Γ(E). It is a smooth function
of E with A′(E) > 0, and the derivative A′(E) is the period of the classical trajectory on
Γ(E).

Fact 2. In the semiclassical limit h → +0, they are approximated by E’s satisfying the so-
called Bohr-Sommerfeld quantization rule (see [21], [32], [35]):

(1.3) −eiA(E)/h = 1.

The condition (1.3) can be rewritten as

A(E) = (2k + 1)πh, k ∈ Z,

and hence the eigenvalues near E0 is a sequence with interval ∼ 2πh/A′(E0).

1.2. Three models of matrix Schrödinger operators. Now we come back to the matrix-
valued operator P defined by (1.1).

Let Γj(E) be the characteristic set of each Pj ;

(1.4) Γj(E) := {(x, ξ) ∈ R2; pj(x, ξ) = E} = p−1
j (E).

We are interested in the case Γ1(E) ∩ Γ2(E) 6= ∅. We call crossing points the elements of
Γ1(E) ∩ Γ2(E). If (x, ξ) is a crossing point, then V1(x) = V2(x) =: Vc and ξ2 = E − Vc, and
hence Vc ≤ E, namely the crossing value is below or at the energy level.

Here we always assume

Assumption 1. The potentials V1(x) and V2(x) satisfy the condition 1, and W (x) is a real-
valued smooth function on R extended to a bounded analytic function in S .

Assumption 2. The potentials cross at one point x = 0 below E0, more precisely,

(1.5) {x ∈ R;V1(x) = V2(x) ≤ E0} = {0}, V1(0) = V2(0) = 0 < E0,

and the contact order is finite: for m = 1, 2, . . . , one has

(1.6) V
(k)
1 (0)− V

(k)
2 (0) = 0 (0 ≤ k ≤ m− 1), V

(m)
1 (0)− V

(m)
2 (0) 6= 0.
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Assumption 2 implies that Γ1(E0) and Γ2(E0) intersect at two points (0,
√
E0) and (0,−

√
E0)

and the contact order at these points are both m. In the case where E0 = 0, the crossing
point x = 0 is also a turning point of each Vj . Γ1(0) and Γ2(0) intersect at one point (0, 0)
with contact order 2m. This case was studied in [4], but we avoid it here for the simplicity
of the presentation.

1.2.1. Model A: non-trapping × non-trapping. Let us first consider the case where E0

is non-trapping for both V1 and V2. In addition to Assumptions 1 and 2, we assume condition
2+ for V1 with turning point c1 and condition 2− for V2 with c2 such that c2 < c1. Then there
exists a directed cycle composed by the classical trajectories of p1 and p2. Let S(E) be the
volume of the domain bounded by the directed cycle. The following theorem by K. Higuchi
says that a directed cycle may produce resonances near the non-trapping energy for both P1

and P2.

Theorem 1.1. ([17],[18]) Assume m = 1. For h > 0 small enough, there exist resonances
E near E0 such that

ImE ∼ − 1

S′(E0)
h log

1

h
.

Remark 1.1. In the case where both V1 and V2 satisfy condition 2+ (or 2−), we can show
that there is no resonance with imaginary part of order h log 1

h .

1.2.2. Model B: non-trapping × periodic. Suppose now that V1 satisfies the condition
3 while V2 satisfies the condition 2. P1 has eigenvalues near E0 approximated for small h by
the energies E satisfying the Bohr-Sommerfeld rule (1.3) with the action integral A for the
potential V1. The following theorem says that the eigenvalues of P1 shift in the complex plane
transforming into resonances for P. The imaginary part of resonances is of polynomial order
of h and the order is m+3

m+1 = 1 + 2
m+1 . This implies that the quantum particle can escape

more easily from the trapped trajectory when the contact order is larger.

Theorem 1.2. ([12] (m = 1), [3]) For each small h and λ = λ(h) ∈ R near E0 satisfying
the BS rule, there exists a resonance E with |E − λ| = O(h2) such that

Im E ∼ −D(λ)h
m+3
m+1 ,

where D(λ) is a constant independent of h explicitly computable. For example in the case
m = 1, one has

D(λ) =
2πW (0)2√

λA′(λ)(V ′
2(0)− V ′

1(0))
sin2

(
S(λ)

h
− π

4

)
.

Here S(λ) is the volume of the domain bounded by the directed cycle as in the previous theorem.

Remark 1.2. When the interaction W vanishes at the crossing point x = 0, the top term
coefficient D(λ) vanishes too. V. Louatron has studied such a case in [27] and computed the
first term of the imaginary part of resonances. He showed that the leading order in h becomes
m+3+2k
m+1 when the vanishing order of W at x = 0 is k.

1.2.3. Model C: periodic × periodic. Finally we suppose that both V1 and V2 satisfy the
condition 3, in addition to Assumptions 1 and 2. This implies that the two turning points
aj , bj of each Vj satisfy for example a1 < a2 < b1 < b2. It is known that the spectrum of P
near E0 consists of eigenvalues, and they are approximated by the union of the eigenvalues
of P1 and the ones of P2.
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In order to measure the interaction between the two well [a1, b1] and [a2, b2], we study
the symmetric case V1(x) = V2(−x), where the operators P1 et P2 have exactly the same
eigenvalues. Due to the interaction between the two wells, the so-called eigenvalue splitting
occurs and a couple of eigenvalues E+, E− corresponding to a same eigenvalue λ of P1, P2 have
a small distance concerning the strength of the interaction. In the well-known case of a scalar
Schrödinger operator with a symmetric double well potential, the interaction is caused by the
tunneling effect through the barrier between the wells, and the splitting is exponentially small
in h. The exponential rate is the Agmon distance between the two wells. In the present case,
the interaction is governed by the change of trajectory at crossing points an the splitting is
of polynomial order in h.

Theorem 1.3. ([2]) Assume m = 1. For each small h and λ = λ(h) near E0 satisfying the

BS rule for P1 = P2, there exist two eigenvalues E+ et E− of P with |E± − λ| = O(h3/2)
such that

|E+ − E−| ∼ D(λ)h3/2,

where the constant is given, with v := V ′
1(0) = −V ′

2(0), by

D(λ) =

√
2π

v

|W (0)|
λ1/4A′(λ)

∣∣∣∣cos(S(λ)

h
+

π

4

)∣∣∣∣ .
1.3. Microlocal method. In the next section, we introduce the space of microlocal solutions
E(x0,ξ0)(P−E) to the system (P−E)u = 0 at each point (x0, ξ0) of the phase space Rx×Rξ:
u ∈ E(x0,ξ0)(P − E) if (P − E)u ≡ 0 at (x0, ξ0) in the sense of Definition 2.1.

As in the three models, we assume that Pj is of real principal type for each j = 1, 2, namely,
dpj 6= 0 if pj = 0. We will see the following facts:

Proposition 1.3. Let Γc(E) = Γ1(E) ∩ Γ2(E) be the set of crossing points. Then one has

dimE(x0,ξ0)(P − E) =


0 if (x0, ξ0) /∈ Γ1(E) ∪ Γ2(E),

1 if (x0, ξ0) ∈ (Γ1(E) ∪ Γ2(E)) \ Γc(E),

2 if (x0, ξ0) ∈ Γc(E).

Proof. The first two statements are analogous to the scalar case. The first one is due to the
microlocal ellipticity of P −E near (x0, ξ0), namely det(P(x0, ξ0)−E) 6= 0. If (x0, ξ0) is on
Γ1(E) \ Γ2(E), for example, the problem is reduced to the scalar case for P1 − E, and it is
well known that the operator is microlocally reduced to the operator hDx (see for example
the text by Zworski [36]), which implies that dim E(x0,ξ0)(P −E) = 1 in our one dimensional
setting. The space E(x0,ξ0)(P −E) is generated by a Lagrangian distribution associated with
the classical trajectory γ which (x0, ξ0) belongs to. We will denote this space by Eγ(P −E).

The last statement will be proved using Theorem 2.1 of the next section, at least in the
generic case where the crossing point is not a turning point. In such a case, the crossing point
is microhyperbolic in the direction (sign ξ0, 0) in the sense of Definition 2.5. Let γ1,♭ ⊂ Γ1(E)
and γ2,♭ ⊂ Γ2(E) be the two incoming classical trajectories (with the orientation by the time
evolution) to the crossing point (x0, ξ0), and γ1,♯ ⊂ Γ1(E) and γ2,♯ ⊂ Γ2(E) the outgoing
ones. Then Theorem 2.1 implies that if a microlocal solution u at the crossing point (x0, ξ0)
is microlocally zero both on γ1,♭ and on γ2,♭, then it is microlocally zero at (x0, ξ0) (and hence
both on γ1,♯ and on γ2,♯). This implies that dim E(x0,ξ0)(P − E) ≤ 2.
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On the other hand, one can construct WKB solutions fγj , j = 1, 2, such that fγj generates
Eγj (P −E) and that fγj ≡ 0 on γk for k 6= j. This implies that dim E(x0,ξ0)(P −E) ≥ 2, and
the third statement of the proposition is proved. □

The previous proposition leads to the definition of what we call microlocal scattering matrix
at each crossing point (x0, ξ0) ∈ Γ1(E) ∩ Γ2(E). As we saw in the proof, the microlocal data
on the incoming classical trajectories γ1,♭ and on γ2,♭ determine those of the outgoing classical
trajectories γ1,♯ and on γ2,♯.

Definition 1.4. There exists an h-dependent 2 × 2 constant matrix T such that if u ∈
E(x0,ξ0)(P − E), and if

u ≡ αj,♭fj,♭ on γj,♭,

u ≡ αj,♯fj,♯ on γj,♯,

then

(1.7)

(
α1,♯

α2,♯

)
= T

(
α1,♭

α2,♭

)
.

Remark 1.5. The definition of T depends on the choice of the generators fj,♭ and fj,♯.

The main goal of this course is the following semiclassical asymptotic formula of the mi-
crolocal scattering matrix (which will be restated as Theorem 4.1), which says that, for a
suitable choice of the WKB solutions fγj , j = 1, 2 (such that the phase function vanishes
at the crossing point), it is an identity matrix at the principal level and the second term is

off-diagonal of order h
1

m+1 . This subprincipal term, which stands for the change of trajec-
tory by the quantum particles, concerns the imaginary part of resonances or the splitting of
eigenvalues.

Theorem 1.4. There exists a constant ω (given in Theorem 4.1) such that one has

(1.8) T = Id− ih
1

m+1

(
0 ω
ω 0

)
+O(h

2
m+1 ) as h → 0.

The union Γ1(E) ∪ Γ2(E) can be regarded as finite directed graph G = (V, E) with the set
of vertices V and the set of edges E when the crossing points and classical trajectories are
regarded as vertices and edges respectively.

On a graph G = (V, E), we define a monodromy matrix M = M(E, h).

Definition 1.6. M is the matrix the size of which is the number of finite edges ♯Efin:

M = (me,e′)e,e′∈Efin .

The entries are defined by

me,e′ =

{
(Tv)jk if e− = (e′)+ = v, e ⊂ Γj , e

′ ⊂ Γk,

0 if e− 6= (e′)+,

where (Tv)jk is the (j, k) entry of the microlocal scattering matrix Tv at the vertice v, and
e−, e+ stand for the starting point and the endpoint respectively of the edge e.

Remark 1.7. The monodromy matrix M is independent of the choice of fj,♭ and fj,♯.
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Let us illustrate the situation in the case of model B.

There are two vertices v+ = (0,
√
E) and v− = (0,−

√
E) and 5 edges e1, e2 ⊂ Γ1(E),

e3, e4, e5 ⊂ Γ2(E) such that e+1 = v+, e
+
2 = v− and e−3 = v+, e

+
3 = v−, e

+
4 = v+, e

−
5 = v−.

The edges e4 and e5 are not finite and there are only three finite edges e1, e2, e3. Then the
monodromy matrix M is of the form

M =

 0 (Tv−)11 (Tv−)12
(Tv+)11 0 0
(Tv+)21 0 0


Proposition 1.8. The eigenvalues or the resonances near E0 are approximated by the set of
E’s satisfying the condition (see [2], [3] for the precise description)

(1.9) det(M(E, h)− I) = 0.

In the case of Model B, the condition (1.9) gives

(1.10) 1− (Tv−)11(Tv+)11 − (Tv−)12(Tv+)21 = 0.

Regardless of the choice of the WKB solutions on the edges, the off-diagonal entries (Tv−)12

and (Tv+)21 are of order h
1

m+1 . Hence the first approximation that the condition (1.10)
supplies us is

1− (Tv−)11(Tv+)11 = O(h
2

m+1 ).

The diagonal entry (Tv+)11 is 1 modulo O(h
1

m+1
+ϵ) if the WKB solutions on e1 and on e2 are

chosen with phase base point at v+. If the other diagonal entry (Tv−)11 is computed with

these WKB solutions, it becomes exp i (A(E)/h− π) modulo O(h
1

m+1
+ϵ). π is the Maslov

correction arising from the turning points (a(E), 0) and (b(E), 0).

In order to obtain the asymptotics of the imaginary part of resonances, we should take the
smaller term (Tv−)12(Tv+)21 into account. But for this purpose, Theorem 4.1 is not sufficient.
We also need the second terms of the diagonal entries which are in the error in this theorem.

There is an alternative way to compute the imaginary part of resonances. Let x̂ be a point
near −∞. It is in the classically allowed region for P2. We compute the scalar product in the
space L2([x̂,+∞)) of a resonant state w with (P − E)w, which is zero, to have

0 = 〈(P − E)w,w〉L2([x̂,+∞))

= ‖hDxw‖2L2([x̂,+∞)) − E‖w‖2L2([x̂,+∞)) − h2〈w′(x̂),w(x̂)〉.

Taking the imaginary part of this identity, we obtain an expression of the imaginary part of
the resonance in terms of the values of the normalized resonant state w and its derivative at
the point x̂: If we write w = t(w1, w2), we have

(1.11) ImE · ‖w‖2L2([x̂,+∞)) = −h2(w′
1(x̂)w1(x̂) + w′

2(x̂)w2(x̂)).

Now we look at this identity from the microlocal point of view. Suppose

w ≡ αjfej on ej , j = 1, . . . 5.

We normalize w such that α1 = 1 for example. The fact that w is a resonant state implies
that it is microlocally zero on the incoming trajectory e4, i.e. α4 = 0. Then we see from the
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microlocal scattering matrix at the crossing points that w is microlocally supported only on
Γ1(E) at the principal level, and it follows that

‖w‖2L2([x̂,∞) ∼ 2A(E).

On the other hand, the right hand side of (1.11) is governed by the second term w′
2(x̂)w2(x̂),

because x̂ is outside the x-space projection of Γ1(E). Furthermore, w is microlocally zero on
the incoming trajectory e4, and hence the right hand side of (1.11) is written in terms of α5.
Writing w2 and w′

2 in the WKB form, we obtain the following formula from which we can
compute the asymptotics of the imaginary part of resonances.

Lemma 1.9. Let E a resonance near E0. Then one has

ImE = − h|α5|2

2A′(E)
+O(h

m+3
m+1

+δ).

2. Basic microlocal study

2.1. Propagation of singularities. Let H(x, ξ) = (Hjk(x, ξ))
N
j,k=1 be a N × N matrix-

valued smooth function on the phase space Rn
x × Rn

ξ satisfying

|∂α
x ∂

β
ξ Hj,k(x, ξ)| ≤ Cα,β

for all 1 ≤ j, k ≤ N . We call symbol such a matrix-valued function in S(1). To each
H(x, ξ) ∈ S(1), we associated an operator

HW (x, hD)u :=
1

(2πh)n

∫∫
e

i
h
(x−y)·ξH

(
x+ y

2
, ξ

)
u(y)dydξ

applied to a vector-valued function u = t(u1, . . . , uN ) ∈ S (Rn,CN ). We call this operator
Weyl quantization of the symbol H(x, ξ). It is extended to a bounded operator in L2(Rn,CN ).

Definition 2.1. Let (x0, ξ0) be a point in Rn
x ×Rn

ξ , and u(x, h) = t(u1, . . . , uN ) be a vector-

valued function in L2(Rn,CN ) with ‖u‖L2(Rn,CN ) ≤ 1. We say that u is microlocally infinitely

small (or more simply microlocally zero) at (x0, ξ0) if there exists χ(x, ξ) ∈ S(1) such that
χ(x0, ξ0) = 1 and

‖χW (x, hD)u‖ = O(h∞).

The complementary set of such points is called semiclassical wave front set and denoted
WFh(u). We say that u is a microlocal solution to the system HWu = 0 at (x0, ξ0) if
HWu ≡ 0 at (x0, ξ0). We denote E(x0,ξ0)(H

W ) the vector space of microlocal solutions to the

system HWu = 0 at (x0, ξ0).

Proposition 2.2. For a function u(x, h) of the WKB form

u(x, h) = e
i
h
ϕ(x)a(x),

where ϕ ∈ C∞(Rn,R) is a real and a(x) ∈ C∞
0 (Rn,CN ), we have

WFh(u) =

{(
x,

∂ϕ

∂x
(x)

)
;x ∈ supp a

}
.



SEMICLASSICAL ANALYSIS FOR MATRIX-VALUED OPERATORS 9

Now we allow that the symbol H depends on h:

H(x, ξ;h) = H0(x, ξ) + hR(x, ξ;h), H0, R ∈ S(1),

and assume that H0, the principal symbol, is Hermitian.

Example. The operator P is the Weyl quantization of the symbol(
ξ2 + V1(x) hW (x)
hW (x) ξ2 + V2(x)

)
=

(
ξ2 + V1(x) 0

0 ξ2 + V2(x)

)
+ h

(
0 W (x)

W (x) 0

)
.

Remark that the principal symbol is a diagonal matrix.

Let u(x, h) ∈ L2(Rn;CN ) satisfying ‖u‖ ≤ 1 be a solution to the system

(2.1) HW (x, hD)u = 0.

We first have the following microlocal property of u.

Proposition 2.3. The semiclassical wave front set is included in the characteristic set:

WFh(u) ⊂ Γ := {(x, ξ); detH0(x, ξ) = 0}.

Remark 2.4. If we denote λ1(x, ξ) ≤ λ2(x, ξ) ≤ · · · ≤ λN (x, ξ) the eigenvalues of the matrix
H0(x, ξ), the characteristic set is expressed by

Γ =
N⋃
j=1

{(x, ξ);λk(x, ξ) = 0}.

In the case HW = P − E, we have Γ = Γ1(E) ∪ Γ2(E), where Γj(E) is defined by (1.4).

We now state a propagation of singularity theorem in the case of system. In this case, the
real principal type condition is generalized to the microhyperbolicity condition in the sense
of Ivrii [22].

Definition 2.5. A Hermitian symbol H0(x, ξ) is said to be microhyperbolic at a point
(x0, ξ0) ∈ Rn × Rn in the direction (x∗, ξ∗) ∈ (Rn × Rn) \ (0, 0) if there exists a constant
C > 0 such that for any ω ∈ CN we have

(2.2) 〈∂(x∗,ξ∗)H0(x0, ξ0)ω, ω〉 ≥
1

C
‖ω‖2 − C‖H0(x0, ξ0)ω‖2.

where ∂(x∗,ξ∗) := x∗ · ∂x + ξ∗ · ∂ξ is the directional derivative in the direction (x∗, ξ∗).

At any point (x0, ξ0) satisfying detH0(x0, ξ0) 6= 0, H0(x, ξ) is microhyperbolic in any
direction (x∗, ξ∗) ∈ R2n \ (0, 0). In the scalar case N = 1, H0(x, ξ) is microhyperbolic at a
point (x0, ξ0) satisfying H0(x0, ξ0) = 0 in some direction if and only if ∇H0(x0, ξ0) 6= 0.

Now let us consider a simple example of operator of the form P whose principal symbol is(
ξ2 + a1x 0

0 ξ2 + a2x

)
, a1a2 6= 0, a1 < a2.

The characteristic sets Γj = {(x, ξ) ∈ R2; ξ2+ajx = 0}, j = 1, 2 are parabolas which intersect
tangentially at the origin: Γ1 ∩ Γ2 = {(0, 0)}. For each j = 1, 2, the scalar symbol ξ2 + ajx is
microhyperbolic at (0, 0) in any direction (x∗, ξ∗) with ajx

∗ > 0. The matrix-valued symbol
H(x, ξ) is microhyperbolic in any direction x∗ > 0 [resp. x∗ < 0] if both a1, a2 are positive
[resp. negative], whereas H(x, ξ) is not microhyperbolic in any direction if a1a2 < 0.
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The following theorem is due to Ivrii [22].

Theorem 2.1. Let u(x, h) ∈ L2(Rn;CN ) satisfying ‖u‖ ≤ 1 be a solution to the system
(2.1). Assume that H0(x, ξ) is microhyperbolic at a point (x0, ξ0) ∈ Rn × Rn in the direction
(x∗, ξ∗) ∈ (Rn × Rn) \ (0, 0). If there exists a neighborhood U of (x0, ξ0) such that

WFh(u) ∩ {(x, ξ) ∈ U ; ξ∗ · (x− x0)− x∗ · (ξ − ξ0) < 0} = ∅,

then (x0, ξ0) /∈ WFh(u).

Remark 2.6. Let g(x, ξ) := ξ∗ · x − x∗ · ξ. Then the microhyperbolicity of H0 at (x0, ξ0) in
the direction Hg(x0, ξ0) (Hamilton vector field of g) is expressed by

{H0, gIN}+ CH2
0 ≥ 1

C
at (x0, ξ0),

and the conclusion of Theorem 2.1 is

(2.3) WFh(u) ∩ {(x, ξ) ∈ U ; g(x, ξ) < g(x0, ξ0)} = ∅ ⇒ (x0, ξ0) /∈ WFh(u).

We see from Remark 2.6 that Theorem 2.1 implies that if there exists a local scalar escape
function, then the semiclassical wave front set propagates in the direction where the escape
function increases.

In particular in our models A, B and C, every point in the phase space is microhyperbolic.
At the crossing point v+ = (0,

√
E), g(x, ξ) = x is an escape function, and hence P is

microhyperbolic in the direction (0, 1), while at v− = (0,−
√
E), g(x, ξ) = −x is an escape

function, i.e. P is microhyperbolic in the direction (0,−1).

Remark 2.7. We finally remark that the terminology microhyperbolic was introduced by
Kawai and Kashiwara for a scalar analytic symbol. They say that an analytic symbol H is
microhyperbolic at (x0, ξ0) in the direction Hg, if there exist a neighborhood U of (x0, ξ0) and
a constant δ0 > 0 such that for all (x, ξ) ∈ U and for all 0 < δ < δ0, one has

(2.4) H0(x+ iδ∂ξg(x0, ξ0), ξ − iδ∂xg(x0, ξ0)) 6= 0.

This is weaker than the microhyperbolicity in the sense of Definition 2.5. In fact, the symbol xξ
in dimension n = 1 is not microhyperbolic in the sense of Definition 2.5 but microhyperbolic
in the sense of (2.4) for any g(x, ξ) := −ξ∗ · x + x∗ · ξ with x∗ξ∗ 6= 0. The well known
Kawai-Kashiwara theorem [26] states the propagation of analytic wave front set (2.3) under
the microhyperbolicity (2.4).

2.2. Landau-Zener model. We take a simple example called Landau-Zener model:

H(x, ξ) =

(
ξ − x ϵ
ϵ ξ + x

)
.

We will take ϵ = h later, but for the moment it is an independent small parameter. Its Weyl
quantization is written in the form

HW (x, hD) =

(
A− ϵ
ϵ A+

)
= hD +Q, A± = hD ± x, Q =

(
−x ϵ
ϵ x

)
If x is regarded as time variable, the equation

(2.5) (hD +Q)u = 0
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is an evolution equation for a Hamiltonian Q. The parameter h is regarded as adiabatic
parameter, namely it represents the slow time scale.

When ϵ = 0, the eigenvalues −x and x of the matrix Q cross at the origin x = 0. In other
words, the characteristic sets {(x, ξ); ξ = x} and {(x, ξ); ξ = −x} cross transversally at the
origin (x, ξ) = (0, 0). The solution to (2.5) is written as

u = C+

(
e

i
2h

x2

0

)
+ C−

(
0

e−
i
2h

x2

)
.

Remark that the semiclassical wave front sets of the functions e±
i
2h

x2
are on {(x, ξ); ξ = ±x}

respectively (see Proposition 2.2).

When ϵ > 0, the eigenvalues of Q becomes ±
√
x2 + ϵ2 that avoid crossing with distance

2ϵ. Thus the two parameters h and ϵ play opposite roles. As h becomes small, the transition
becomes small whereas as ϵ becomes small, the transition becomes large. In fact, Landau

showed that the transition probability is given by e−
πϵ2

h .

Let us consider an integral operator

(Tv)(x) :=

∫
R
e

i
h
ϕ(x,y)v(y)dy, ϕ(x, y) =

x2

2
−
√
2xy +

y2

2
.

The canonical transformation (y,−ϕ′
y(y)) 7→ (x, ϕ′

x(x)) associated with the phase function

ϕ(x, y) is the rotation with angle −π/4: (y, η) 7→ (x, ξ) = ((y + η)/
√
2, (−y + η)/

√
2), which

sends {(x, ξ); ξ = ±x} to {(x, ξ); ξ = 0} and {(x, ξ);x = 0} respectively.

We immediately see the following formulas.

A+Tv =
√
2T (hDv) , A−Tv = −

√
2T (xv).

Put u = Tv. Then the system (2.5) becomes

(2.6)

(
−x ϵ√

2
ϵ√
2

hD

)
v = 0.

Solving this reduced system, which means(
xhD +

ϵ2

2

)
v2 = 0, v1 =

ϵ

2x
v2,

we obtain the following distribution solutions

v±(x, h) =

 ϵ√
2
Y (±x)|x|−i ϵ

2

2h
−1

Y (±x)|x|−i ϵ
2

2h

 ,

where Y (t) is the Heaviside function.

Let us study the asymptotic behavior of the solution u+ = Tv+ to the equation (2.5):

u+ = Tv+ =

( ϵ√
2
Iµ(x, h)

Iµ+1(x, h)

)
, µ = −i

ϵ2

2h
,

where Iµ(x, h) is the function defined by the following integral.

Iµ(x, h) =

∫ ∞

0
e

i
h
ϕ(x,y)yµ−1dy.
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This integral is well-defined for µ ∈ C \ {0,−1,−2, . . .}. It is important to remark here that

if 0 < ϵ = o(h
1
2 ) as h → +0, then 0 6= µ = o(1) and Iµ is well-defined.

Modulo O(h∞), there are two contributions to the asymptotic behavior of the integral Iµ.
One is the endpoint x = 0 of the integral range, and the other is the critical point of the
phase function ϕ(x, y).

First we compute the contribution from the endpoint. Since y is close to zero, we take the
first two terms of the phase function to get

I0µ(x, h) = e
i
2h

x2

∫ ∞

0
e

i
h

√
2xyyµ−1dy.

With the change of variable i
h

√
2xy = −t, we have for x 6= 0,

(2.7) I0µ(x, h) = e
i
2h

x2

∫ ∞

0
e−ttµ−1dy

(
ih√
2x

)µ

= Γ(µ)

(
ih√
2x

)µ

e
i
2h

x2

Second, we compute the contribution from the critical point. Since ϕ′
y = −

√
2x + y, the

critical point y =
√
2x exists in the integration range (0,∞) only for x > 0. Fix x > 0, and

take a cutoff function χ(y) ∈ C∞
0 (R+) which is identically 1 near y = x and identically 0

neear y = 0. We consider

Icµ(x, h) =

∫ ∞

0
e

i
h
ϕ(x,y)yµ−1χ(y)dy.

Since ϕ′′
yy = 1, the stationary phase method leads to the asymptotic formula

(2.8) Icµ(x, h) ∼ ei
π
4

√
2πh(

√
2x)µ−1e−

i
2h

x2
.

Summing up, we have seen that the solution u+ to the Landau-Zener system (2.5) has the
asymptotic formula (2.7) for x < 0, while it is the sum of the two terms (2.7) and (2.8).

From the microlocal point of view, the above fact is interpreted as follows. Both (2.7) and

(2.8) are of WKB form with phase functions x2

2 and −x2

2 respectively. Proposition 2.2 tells
that their semiclassical wave front set is on the Lagrangian submanifold {(x, ξ); ξ = x} and
{(x, ξ); ξ = −x} respectively. Thus we obtain

WFh(u+) = {(x, ξ); ξ = x} ∪ {(x, ξ); ξ = −x, x > 0}.

3. WKB solutions

3.1. Formal construction. We formally construct a WKB solution u = t(u1, u2) to the
system

(3.1) Pu = Eu, u =

(
u1
u2

)
,

in the WKB form

(3.2) u(x, h) = eiϕ(x)/ha(x, h), a(x, h) =

(
a1(x, h)
a2(x, h)

)
∼

∞∑
k=0

hk
(
a1,k(x)
a2,k(x)

)
.

Since

e−
i
h
ϕ(x)(Pj − E)(e

i
h
ϕ(x)aj) =

(
(ϕ′)2 + Vj − E

)
aj +

h

i
Laj − h2a′′j ,
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where L is the first order linear differential operator

L = 2ϕ′ d

dx
+ ϕ′′,

the equation (3.1) with (3.2) requires the coefficients ak to satisfy

(3.3)

(
(ϕ′)2 + V1 − E 0

0 (ϕ′)2 + V2 − E

)
ak +

(
−iL W
W −iL

)
ak−1 +

d2

dx2
ak−2 = 0,

for all k = 0, 1, 2, . . ., with the convention that ak ≡ 0 for negative k. In particular, when
k = 0, one has

(3.4)

(
(ϕ′)2 + V1 − E 0

0 (ϕ′)2 + V2 − E

)
a0 = 0.

In order to obtain a non-trivial sequence of coefficients, we should require either (ϕ′)2 + V1 −
E = 0 or (ϕ′)2 + V2 − E = 0. Let ϕ satisfy the first one

(3.5) (ϕ′)2 + V1(x)− E = 0.

This is the eikonal equation for the WKB solution to the single equation (P1 − E)u1 = 0. It
determines the phase function ϕ1 up to an additive constant. If x is in the classically allowed
region {x;V1(x) ≤ E}, then the solution of (3.5) is written ϕ(x) = ±ϕ1(x) where

(3.6) ϕj(x, x0) =

∫ x

x0

√
E − Vj(t)dt, j = 1, 2.

Here x0 is an arbitrary point in the classically allowed region. We will usually take as this
point a turning point.

With this ϕ = ϕ1, the second condition in (3.4) becomes(
0 0
0 V2 − V1

)
a0 = 0.

and hence we have

(3.7) a2,0(x) = 0,

unless V1(x)− V2(x) vanishes identically.

The recurrence equation (3.3) becomes

L1a1,k−1 = ia′′1,k−2 − iWa2,k−1,(3.8)

(V2(x)− V1(x)) a2,k = iL1a2,k−1 + a′′2,k−2 −Wa1,k−1,(3.9)

where L=2ϕ
′
1

d
dx + ϕ′′

1.

The transport equation (3.8) with k = 1 gives

La1,0 = 0,

which is the first transport equation for the single equation (P1 −E)u1 = 0, and the solution
is given up to a multiplicative constant by

a1,0(x) =
1

(E − V1(x))
1
4

.
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Next, the transport equation (3.9) with k = 1 yields, with (3.7),

a2,1(x) =
W (x)

(V1(x)− V2(x))(E − V1(x))
1
4

The second coefficient a1,1 of the first entry satisfies

L1a1,1 = ia′′1,0 − iWa2,1,

=

(
i

(E − V1(x))
1
4

)′′

− i
W (x)2

(V1(x)− V2(x))(E − V1(x))
1
4

.

This is a first order linear differential equation and is uniquely solved in any interval in the
classically allowed region for p1 free from turning point and crossing point when an initial
condition a1,1(x1) = 0 is imposed at some point x1 in this interval.

In the same way, we inductively determine a1,k by (3.8), and a2,k by (3.9) one after the
other. Thus we obtain formal a power series solutions of the form

u±
1 (x, h) = e±

i
h
ϕ1(x)

∞∑
k=0

hk
(
a1,k(x)
a2,k(x)

)

=
e±

i
h
ϕ1(x)

(E − V1(x))
1
4

((
1
0

)
+ h

(
∗

W (x)
V1(x)−V2(x)

)
+ · · ·

)
,

(3.10)

where we omit the computation of ∗ = (E − V1(x))
1
4a1,1.

Similarly, starting from the eikonal equation

(3.11) (ϕ′
2)

2 + V2(x)− E = 0,

we get other formal solutions

u±
2 (x, h) =

e±
i
h
ϕ2(x)

(E − V2(x))
1
4

((
0
1

)
+ h

(
W (x)

V2(x)−V1(x)

∗

)
+ · · ·

)
.(3.12)

As in the usual single Schrödinger equation case, these expressions of solutions have singu-
larities at the turning points, i.e. the zeros of E − Vj(x). In our matrix case, moreover, they
have additional singularities at the zeros of V1(x)− V2(x), that we will call crossing points.

These apparent singularities are due to the divergence of the infinite series. To give a sense
to these divergent series, we take a Borel sum. Namely, we construct functions u±

j (x, h) which
have the infinite series as their asymptotic expansions as h → 0. We denote them again by
the same notations u±

j (x, h). They are no longer solutions to our system (3.1), but are only
quasi-modes, i.e. they satisfy

(3.13) (P − E)u±
j = O(h∞),

uniformly in an interval contained in the classically allowed region away from turning points
and crossing points. We see in the next section that they can be regarded as microlocal
solutions when restricted to the characteristic set in the phase space.

We finally recall, before ending this section, that our construction of WKB solutions of the
form (3.10) and (3.12) depends on the choice of the base point x0 of the phase function and
the base point x1 of the symbol function. In the following we specify the choice of x0 but
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we do not specify x1. The change of x1 results in an error of order h since this choice first
appears for a1,1 as we saw above.

3.2. Microlocal WKB solutions. Now let us observe the frequency set of the WKB solu-
tions u±

j , j = 1, 2 that we constructed in the previous section. Let Γt(E) be the set of turning

points and Γc(E) the set of microlocal crossing points:

Γt(E) = Γ1,t(E) ∪ Γ2,t(E), Γj,t(E) := {(x, 0);Vj(x) = E},

Γc(E) := Γ1(E) ∩ Γ2(E) = {(x, ξ);V1(x) = V2(x) ≤ E, ξ = ±
√
E − V1(x)}.

To each function u±
j , there corresponds a connected component γ of the set Γ(E)\(Γt(E)∪

Γc(E)) in the phase space. This component is chosen in such a way that it belongs to
Γ±
j (E) := Γj(E) ∩ {(x, ξ);±ξ > 0} and u±

j is defined in its x-projection π(γ). According to
this correspondence, we write

fγ := u±
j ,

and call it microlocal WKB solution on γ. Recall that the WKB solution u±
j depends on the

choice of the base point x0 ∈ π(γ) for the phase function ϕj(x, x0) (see (3.6)), and the base
point x1 of the symbol. When necessary, we will also denote fγ = fγ,α specifying the point α
on γ such that π(α) = x0. The change of the choice of x1 makes a change of O(h).

The microlocal WKB solution fγ satisfies

(3.14) (P − E)fγ = O(h∞) in π(γ)

as we saw in the previous section. Moreover, we see from Proposition 2.3 that

(3.15) WFh(fγ) ∩ (π(γ)× Rξ) = γ.

In fact, the set γ is a Lagrangian manifolds defined by ξ = ±ϕ′
j(x) = ±

√
E − Vj(x) for x in

the classically allowed region for pj .

On the contrary, to each connected component γ of the set Γ(E) \ (Γt(E) ∪ Γc(E)), a
microlocal WKB solution fγ is associated. Moreover, the vector space of microlocal solutions
on each γ is one-dimensional. In fact, if γ ⊂ Γ1(E), say, the operator P1 − E is reduced to
the normal form hDx while P2 − E is elliptic there. Therefore it is generated by fγ .

Summing up, we have the following proposition.

Proposition 3.1. Let u ∈ L2(R;C2), ‖u‖L2 ≤ 1 be a solution to the system (3.1). Then for
each connected component γ of the set Γ(E) \ Γt(E) ∩ Γc(E), there exists a complex number
αγ such that

u ≡ αγfγ on γ.

Remark 3.2. The number αγ is determined up to O(h∞) when the base points of the phase
and the symbol are specified, but up to O(h) when only the base point of the phase is specified.

4. Microlocal scattering matrix at a crossing point

If we know αγ for all the connected component γ of Γ(E) \ Γt(E) ∩ Γc(E), we have all
the microlocal information of u in the phase space since u is microlocally infinitely small
outside the characteristic set Γ(E) as stated in Proposition 2.3. This permits us to know the
global behavior of u modulo O(h∞), which leads to the asymptotic study of eigenvalues or
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resonances. In fact, it holds that if a solution u ∈ L2(R;C2), ‖u‖L2 ≤ 1 to the system (3.1)
is microlocally infinitely small everywhere in I × Rξ for an interval I ⊂ Rx, then ‖u‖L2(I) =
O(h∞). Namely, the microlocal behavior in I×Rξ determines the local behavior in I modulo
O(h∞).

Thus the global study of solutions to the system (3.1) is reduced to the connection of the
coefficients αγ at each turning point and crossing point. The connection problem at a turning
point is well known at least for the scalar case in general dimension as Maslov’s theory. In the
system case also, similar formulas hold as long as the turning point is not a crossing point.

4.1. Connection at a turning point. Let (x∗, 0) ∈ Γt \ Γc. Suppose for example it is a
turning point of p1: (x

∗, 0) ∈ Γ1,t. We assume it is a simple turning point, i.e.

V ′
1(x

∗) 6= 0.

Then, there are exactly two connected components of Γ(E) \ (Γt(E)∪Γc(E)) which have the

turning point (x∗, 0) as an extremity. Let γ♭ be the one which has (x∗, 0) as endpoint of the

Hamiltonian flow Hp1 on it and γ♯ the other one. In other words, γ♭ is the incoming classical

trajectory to (x∗, 0) and γ♯ is the outgoing classical trajectory from (x∗, 0).

Let f♭ and f♯ be microlocal solutions defined on γ♭ and γ♯ respectively, with phase functions
ϕ1(x, x

∗) based on the turning point x∗ (see (3.6)), and let α♯ = αγ♯ and α♭ = αγ♭ for short
where αγ♯ and αγ♭ are defined by Proposition 3.1. Under this setting, the following asymptotic
connection formula holds. For the proof, we refer for example to [12].

Proposition 4.1. Let u ∈ L2(R;C2), ‖u‖L2 ≤ 1 be a solution to the system (3.1). If

u ≡ α♭f♭ on γ♭,

u ≡ α♯f♯ on γ♯,

then it holds modulo O(h) that

α♯ = −iα♭.

4.2. Connection at a crossing point. Now we study the connection at a crossing point.
Let ρ := (x0, ξ0) ∈ Rx × Rξ be a microlocal crossing point ρ ∈ Γc(λ) = Γ1(λ) ∩ Γ2(λ). We
assume without loss of generality that x0 = 0 and

(4.1) V1(0) = V2(0) = 0.

We moreover assume that V1(x) and V2(x) intersect at x = 0 at a finite order, i.e. there exists
n ∈ N such that

(4.2) V
(k)
1 (0)− V

(k)
2 (0) = 0 (0 ≤ k ≤ m− 1), V

(m)
1 (0)− V

(m)
2 (0) 6= 0.

We suppose E0 > 0. Then for E close to E0, one has ξ0 = ±
√
E and there are two crossing

points ρ+ := (0,
√
E) and ρ− := (0,−

√
E) symmetric with respect to the x-axis. The contact

order at these points are both m. They are not turning points.

As in the previous case of a turning point, we denote γj,♭, γj,♯ for each j = 1, 2 the incoming
and the outgoing classical trajectories on Γj(E) having ρ as their extremity. We write also
αj,♭, αj,♯ the coefficients αγj,♭ , αγj♯

defined in Proposition 3.1.
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Proposition 4.2. Let fj,♭, fj,♯ be the microlocal solutions to (3.1) defined on γj,♭, γj,♯ for each
j = 1, 2 with the phase base point at the microlocal crossing point ρ. Then there exists an
h-dependent constant 2 × 2 matrix T such that if u ∈ L2(R;C2), ‖u‖L2 ≤ 1 is a solution to
the system (3.1), and if αj,♭, αj,♯ are defined for each j = 1, 2 by

u ≡ αj,♭fj,♭ on γj,♭,

u ≡ αj,♯fj,♯ on γj,♯,

then it holds modulo O(h) that

(4.3)

(
α1,♯

α2,♯

)
= T

(
α1,♭

α2,♭

)
.

Proof. The vector space of microlocal solutions at the crossing point ρ is of dimension two
and generated by the pair (f1,♭, f2,♭). In fact they are linearly independent and Theorem 2.1
implies that if u ≡ 0 on γ1,♭ ∪ γ2,♭, then u ≡ 0 on γ1,♯ ∪ γ2,♯ since the principal symbol of P
is microhyperbolic at ρ+ in the direction (0, 1), and at ρ− in the direction (0,−1). □

Remark 4.3. Here we do not specify the symbol base point, and hence the microlocal WKB
solutions are defined up to O(h) only. That is why the microlocal scattering matrix is deter-
mined up to O(h).

We call the matrix T = (tjk)j,k=1,2 microlocal scattering matrix, since it describes the
outgoing waves in terms of the incoming ones. The diagonal entries tjj stands for the trans-
mission of particles along Γj(E) while the anti-diagonal entries tjk stands for the ‘change of
trajectories’ from Γk(E) to Γj(E) at the crossing point.

We are interested in the asymptotic behavior of the microlocal scattering matrix in the
semiclassical limit h → 0. For the sake of the application to the resonance asymptotics,
we fix a real energy E0 and consider the microlocal scattering matrix for E’s in a complex
neighborhood of E0: RE0(δ1, δ2) := {E ∈ C; |ReE − E0| < δ1, |ImE| < δ2}.

Let us begin with the generic case where the crossing point in question is not a turning
point. The following theorem is due to [3].

Theorem 4.1.

(4.4) T = Id− ih
1

m+1

(
0 ω
ω 0

)
+O(h

1
m+1

+ϵ) as h → 0,

where the constant ω ∈ C is given by

(4.5) ω = µm

(
2(m+ 1)!

|V (m)
1 (0)− V

(m)
2 (0)|

) 1
m+1

λ
− m

2(m+1)

0 Γ

(
m+ 2

m+ 1

)
W (0),

(4.6) µm =


exp

(
iπ

2(m+ 1)
sgn

(
V

(m)
2 (0)− V

(m)
1 (0)

))
when m is odd,

cos

(
π

2(m+ 1)

)
when m is even.
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4.3. Local exact solutions and microlocal scattering matrix. Let ρ = ρ+ = (0,
√
E0)

with E0 > 0 be a microlocal crossing point in the phase space. In order to compute the
microlocal scattering matrix T at ρ, we construct local exact solutions to the system (3.1) in
a small neighborhood I of x = 0.

It is well known that there exist exact solutions u±j to the scalar Schrödinger equations

(Pj − E)u = 0 for each j = 1, 2 and E close to E0 > 0 with the semiclassical asymptotic
behavior in I:

u±j ∼ (E − Vj(x))
− 1

4 exp

(
± i

h

∫ x

0

√
E − Vj(t)dt

)
.

We can assume without loss of generality that the Wronskian of u+j and u−j is equal to

W(u+j , u
−
j ) = u+j (u

−
j )

′ − u−j (u
+
j )

′ = −2i

h
.

We suppose here that the smooth function W (x) has a compact support in I. Let Kj,L

and Kj,R be the operators acting on functions f in C∞(R) defined by

Kj,Lf :=
i

2

∫ x

−∞

(
u+j (x)u

−
j (y)− u−j (x)u

+
j (y)

)
W (y)f(y)dy,(4.7)

Kj,Rf :=
i

2

∫ x

∞

(
u+j (x)u

−
j (y)− u−j (x)u

+
j (y)

)
W (y)f(y)dy.(4.8)

They satisfy

(Pj − E)Kj,Lf = −hWf, (Pj − E)Kj,Rf = −hWf.

Using these operators, we construct exact solutions to the system (3.1) by a successive ap-
proximation. The following lemma can be proved using the same argument as the proof of
the next Lemma 4.5.

Lemma 4.4. For S = L,R, we have

(4.9) ‖K1,SK2,S‖B(C(I)) = O(h
1

m+1 ), ‖K2,SK1,S‖B(C(I)) = O(h
1

m+1 ).

This lemma implies that the infinite sums

J1,S :=

∞∑
k=0

(K1,SK2,S)
k, J2,S :=

∞∑
k=0

(K2,SK1,S)
k

converge for sufficiently small h in the space B(C(I)) of bounded operators on C(I).

For S = L,R, we set

(4.10) w±
1,S :=

(
J1,Su

±
1

K2,SJ1,Su
±
1

)
=

(
J1,Su

±
1

J2,SK2,Su
±
1

)
,

(4.11) w±
2,S :=

(
K1,SJ2,Su

±
2

J2,Su
±
2

)
=

(
J1,SK1,Su

±
2

J2,Su
±
2

)
.

These 8 functions wϵ
j,S for j = 1, 2, S = R,L and ϵ = +,− are all exact solutions to the

system (3.1) in the interval I.
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Let γ±j,♭ be the incoming trajectories to the crossing point ρ± and γ±j,♯ the outgoing ones

from ρ± along Γj(λ0) in I × Rξ:

γ+j,♭ = Γj(λ0) ∩ {(x, ξ) ∈ I × R;x < 0, ξ > 0}, γ+j,♯ = Γj(λ0) ∩ {(x, ξ) ∈ I × R;x > 0, ξ > 0},

γ−j,♭ = Γj(λ0) ∩ {(x, ξ) ∈ I × R;x > 0, ξ < 0}, γ−j,♯ = Γj(λ0) ∩ {(x, ξ) ∈ I × R;x < 0, ξ < 0},

and let f±j,♭ and f±j,♯ be the microlocal WKB solutions on γ±j,♭ and γ±j,♯ respectively with phase

base point at ρ±.

We easily see the asymptotic behavior of w±
j,L on the left of the origin I ∩ {x < 0} and

that of w±
j,R on the right of the origin I ∩ {x > 0}, and we deduce their microlocal behavior

modulo O(h) on each trajectory as follows.

Lemma 4.5. The exact solutions w±
j,S, j = 1, 2, S = L,R microlocally behave like

(4.12) w+
j,L ≡

 f+j,♭ on γ+j,♭,

0 on γ−j,♯ ∪ γ+
ĵ,♭

∪ γ−
ĵ,♯
,

w+
j,R ≡

 f+j,♯ on γ+j,♯,

0 on γ−j,♭ ∪ γ+
ĵ,♯

∪ γ−
ĵ,♭
,

(4.13) w−
j,L ≡

 f−j,♯ on γ−j,♯,

0 on γ+j,♭ ∪ γ−
ĵ,♯

∪ γ+
ĵ,♭
,

w−
j,R ≡

 f−j,♭ on γ−j,♭,

0 on γ+j,♯ ∪ γ−
ĵ,♭

∪ γ+
ĵ,♯
,

modulo O(h) as h → 0.

Proof. We only prove for w+
1,L. Recall that

w+
1,L =

(
J1,Lu

+
1

J2,LK2,Lu
+
1

)
,

and

K2,Lu
+
1 (x) =

i

2

∫ x

−∞

(
u+2 (x)u

−
2 (y)− u−2 (x)u

+
2 (y)

)
W (y)u+1 (y)dy

=
i

2
u+2 (x)

∫ x

−∞
u−2 (y)u

+
1 (y)W (y)dy − i

2
u−2 (x)

∫ x

−∞
u+2 (y)u

+
1 (y)W (y)dy.

The last two integrals are oscillatory integrals with integrand

u−2 (y)u
+
1 (y)W (y) =

W (y)

(E − V1(y))
1
4 (E − V2(y))

1
4

exp

(
i

h

∫ y

0
(E − V1(t))

1
2 − (E − V2(t))

1
2dt

)
,

u+2 (y)u
+
1 (y)W (y) =

W (y)

(E − V1(y))
1
4 (E − V2(y))

1
4

exp

(
i

h

∫ y

0
(E − V1(t))

1
2 + (E − V2(t))

1
2dt

)
.

The first integrand has a critical point at the crossing point y = 0 but it is outside the
integration range when x < 0, and the second one has no critical point. Therefore, we see by
an integration by parts that the integrals are both O(h). The only term which is not of order
h is then u+1 in the first entry.

On the other hand, the microlocal solution f+1,♭ also behaves like t(u+1 , 0) modulo O(h).

This ends the proof. □
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The 4 solutions (w+
1,L,w

+
2,L,w

−
1,L,w

−
2,L) as well as the 4 solutions(w+

1,R,w
+
2,R,w

−
1,R,w

−
2,R)

make a basis of exact solutions to the system (P − E)u = 0 in I. Therefore there exists a
constant 4× 4 matrix A such that

(4.14) (w+
1,L,w

+
2,L,w

−
1,L,w

−
2,L) = (w+

1,R,w
+
2,R,w

−
1,R,w

−
2,R)A.

According to the previous lemma, we find the following lemma:

Lemma 4.6. The microlocal scattering matrix T at the crossing point ρ+ = (0,
√
E0) is equal

modulo O(h) to the 2× 2 block matrix A11 of

A =

(
A11 A12

A21 A22

)
defined by (4.14).

We are now going to compute A at the principal level modulo O(h
2

m+1 ) in the semiclassical
limit. We rewrite the definition (4.14) of A in the form

(4.15)

(
w+

1,L w+
2,L w−

1,L w−
2,L

(w+
1,L)

′ (w+
2,L)

′ (w−
1,L)

′ (w−
2,L)

′

)
=

(
w+

1,R w+
2,R w−

1,R w−
2,R

(w+
1,R)

′ (w+
2,R)

′ (w−
1,R)

′ (w−
2,R)

′

)
A,

and look at this identity at x = 0. Here ′ stands for the derivative with respect to x. Notice
that the both sides are 4× 4 matrices. The first column vector on the left hand side is

t(u+1 (0), (K2,Lu
+
1 )(0), (u

+
1 )

′(0), (K2,Lu
+
1 )

′(0)).

The term ( K2,Lu
+
1 )(0) is expressed in a linear combination of u+2 (0) and u−2 (0).

( K2,Lu
+
1 )(0) =

i

2

∫ x

−∞

(
u+2 (x)u

−
2 (y)− u−2 (x)u

+
2 (y)

)
W (y)u+1 (y)dy|x=0

=
i

2

∫ 0

−∞

(
u+2 (0)u

−
2 (y)− u−2 (0)u

+
2 (y)

)
W (y)u+1 (y)dy

= c+1Lu
+
2 (0) + c−1Lu

−
2 (0),

with

c+1L =
i

2

∫ 0

−∞
u−2 (y)u

+
1 (y)W (y)dy, c−1L = − i

2

∫ 0

−∞
u+2 (y)u

+
1 (y)W (y)dy.

Similarly, (K2,Lu
+
1 )

′(0) is written in linear combination of (u+2 )
′(0) and (u−2 )

′(0):

(K2,Lu
+
1 )

′(0) = c+1L(u
+
2 )

′(0) + c−1L(u
−
2 )

′(0).

We define a matrix B by

B =


u+1 (0) 0 u−1 (0) 0
0 u+2 (0) 0 u−2 (0)

(u+1 )
′(0) 0 (u−1 )

′(0) 0
0 (u+2 )

′(0) 0 (u−2 )
′(0)

 .

Then we have (
w+

1,L w+
2,L w−

1,L w−
2,L

(w+
1,L)

′ (w+
2,L)

′ (w−
1,L)

′ (w−
2,L)

′

)
|x=0 = B(I + CL),(

w+
1,R w+

2,R w−
1,R w−

2,R

(w+
1,R)

′ (w+
2,R)

′ (w−
1,R)

′ (w−
2,R)

′

)
|x=0 = B(I + CR),
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where CS , S = L,R are 4× 4 matrices of the form

CS =


0 c+2S 0 c+4S
c+1S 0 c+3S 0
0 c−2S 0 c−4S
c−1S 0 c−3S 0

 .

The entries c±jL are given by

c+2L =
i

2

∫ 0

−∞
u−1 (y)u

+
2 (y)W (y)dy, c−2L = − i

2

∫ 0

−∞
u+1 (y)u

+
2 (y)W (y)dy,

c+3L =
i

2

∫ 0

−∞
u−2 (y)u

−
1 (y)W (y)dy, c−3L = − i

2

∫ 0

−∞
u+2 (y)u

−
1 (y)W (y)dy,

c+4L =
i

2

∫ 0

−∞
u−1 (y)u

−
2 (y)W (y)dy, c−4L = − i

2

∫ 0

−∞
u+1 (y)u

−
2 (y)W (y)dy,

and c±jR are given similarly with the lower endpoint of the integral replaced by +∞.

Remark here that CL, CR are of O(h
1

m+1 ). In fact, as in the proof of Lemma 4.5, the
entries c±jS are oscillatory integrals possibly with a critical point at the origin. The order
of this critical point is the contact order n = m of the two potentials, and hence by the

degenerate stationary phase method, we see that it is of order h
1

m+1 .

Then we obtain, for h small enough,

A = (I + CR)
−1(I + CL)

= I + CL − CR +O(h
2

m+1 )

= I +


0 c+2 0 c+4
c+1 0 c+3 0
0 c−2 0 c−4
c−1 0 c−3 0

+O(h
2

m+1 ),

where

c+1 =
i

2

∫ ∞

−∞
u+1 (y)u

−
2 (y)W (y)dy, c−1 = − i

2

∫ ∞

−∞
u+1 (y)u

+
2 (y)W (y)dy,

c+2 =
i

2

∫ ∞

−∞
u−1 (y)u

+
2 (y)W (y)dy, c−2 = − i

2

∫ ∞

−∞
u+1 (y)u

+
2 (y)W (y)dy,

c+3 =
i

2

∫ ∞

−∞
u−1 (y)u

−
2 (y)W (y)dy, c−3 = − i

2

∫ ∞

−∞
u−1 (y)u

+
2 (y)W (y)dy,

c+4 =
i

2

∫ ∞

−∞
u−1 (y)u

−
2 (y)W (y)dy, c−4 = − i

2

∫ ∞

−∞
u+1 (y)u

−
2 (y)W (y)dy.

The semiclassical asymptotics of these entries are obtained by the stationary phase method
again as in the proof of of Lemma 4.5. The off-diagonal entries c+1 , c

+
2 of the block A11, which

is the microlocal scattering matrix T at the microlocal crossing point ρ+ = (0,
√
λ), and c−3 ,

c−4 of the block A22 have a degenerate stationary point at the origin, whereas those in the
blocks A12, A21 have no critical point.
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More precisely, we have the following asymptotic formula, which gives Theorem 4.1:

c+1 = −iωh
1

m+1 +O(h
2

m+1 ), c+2 = −iωh
1

m+1 +O(h
2

m+1 ),(4.16)

where ω is given by (4.5).
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[4] M. Assal, S. Fujiié, K. Higuchi : Transition of the semiclassical resonance width across a tangentially
crossing energy-level. J. Math. Pure Appl., 191:103634, (2023).
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[9] M. Dimassi, S. Sjöstrand : Spectral Asymptotics in the Semi-Classical Limit. Cambridge University Press,
1999.
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[12] S. Fujiié, A. Martinez, T. Watanabe : Widths of resonances above an energy-level crossing. J. Funct. Anal.
280, no. 6 (2021), 108918.

[13] A. Grigis, A. Martinez : Resonance widths in a case of multidimensional phase space tunneling. Asymptot.
Anal., 91 (2015), no. 1, 33-904.

[14] A. Grigis, A. Martinez, : Resonance widths for the molecular predissociation. Anal. PDE, 7 (2014), no.
5, 1027-1055.
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